1st Order Metal-Insulator Transitions: Are They Universal in Manganites? K.E. Gray, Qing-An. Li, J.W. Freeland*, H. Zheng and J.F. Mitchell, Materials Science Division, Argonne National Laboratory * Advanced Photon Source Argonne National Laboratory The classic approach to the metal-insulator transition (MIT) is based on the overlap of wave functions as in the tight-binding model. Double exchange (DE) in manganites provides added tuning of the overlap by spin. Continuous MITs: vanishing-number (e.g., a gap); or diverging-mass (e.g., Mott-Hubbard system V₂O₃) However Millis et al point out that DE is not enough--need localization mechanism above T_C, e.g., polarons. 1st-order MITs: with Coulomb interaction (Mott); strong coupling to lattice, spin or orbital degrees of freedom A continuous MIT is conventional wisdom in manganites: minimal hysteresis and scaling of magnetization in perovskite, La_{0.8}Sr_{0.2}MnO₃. ## 1st-order MIT vs. H What have we learned? Bilayer manganites, La_{2-2x}Sr_{1+2x}Mn₂O₇ Transport in La_{0.8}Sr_{0.2}MnO₃ fits to thermallyx~0.46 activated hopping, $\sigma \sim \exp(T_{hop}M(T)/M_sT)$, without a concomitant MIT. 200 The AF stacking of FM Tokura and Lofland metallic bilayers leads to a La_{0.8}Sr_{0.2}MnO₃ continuous MIT in $\sigma_c(H_{ab})$. 150 (mass-diverging OR 100 vanishing-number ??) 1st-order MIT vs. T 300 50 0.35 0.45 0.55 x~0.6 T(K) A-type AF H_{ab}(Oe) ## Questions Is the 1st-order MIT versus T for x=0.6 universal for DE manganites (e.g., x-0.4)? Can Anderson localization (due to random spin orientation and Hund's rule energy) explain the conductivity in PM insulator above T_C? > No sign of MIT above T_{C} in σ_{ab} or in $\sigma_c(H){\sim}exp(T_{hop}M(H)/M_sT),$ even if polarons melted by a magnetic field: implies polarons alone are not the localization mechanism above T_C What is localization mechanism for x~0.46 in zero field? Is it gapped or Anderson localized? ## **Plans** Data, in addition to conductivity/magnetization, ideally all on the same crystal - tunneling (insulator gaps, metallic d.o.s.) - polarization-dependent oxygen k-edge absorption (hybridized e_a states) Theory: cluster calculations M. Van Veenendaal (NIU) To do: - Establish tunneling and oxygen k-edge absorption for metallicity, gaps - Identify MITs or insulator-insulator transitions: address if 1st or 2nd order - Except for c-axis of x=0.3, are MITs always 1st-order in manganites? Address whether a MIT occurs above T_C in a sufficiently high magnetic field In-plane e_a states of single-layer manganite probed by xray absorption spectroscopy with ab-plane polarization. Qing'An Li, K.E. Gray and J.F. Mitchell, Phys. Rev. B 67, 184426 (2003) of Energy, Basic Energy Sciences, under contract W-31-109-ENG-38.